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Abstract. Nonlinear parametric Kubo noise is suggested to approximate the effective rate of
crack branch growth. It is shown that the parameter of nonlinearity of this parametric noise can be
used to classify the size probability distributions observed in numerous experiments and numerical
simulations on fragmentation processes related to fracture.

1. Introduction

A recent experiment [1] with fast straight crack instability in a brittle polymer (PMMA) shows
that the instability leads to the appearance of numerous left- and right-side micro-branches
which live a short time and then die. The authors of [1] observed a log-normal distribution of
the micro-branch lengths. Fragmentation processes related to fracture are often characterized
by log-normal distribution as well. Therefore, the authors of [1] (see also [2]) assume that the
probability distribution of the fragment sizes is directly related to the corresponding distribution
of the crack branch lengths. In this paper we use this rather plausible hypothesis to classify
possible types of probability distributions of the fragment sizes in fragmentation processes
related to fracture. It should be noted that the power-law distributions of fragment sizes are
also widely observed in numerical simulations and experiments [3–8]. Although the exponents
of these distributions depend on the conditions (on the space dimension, in particular) some
‘attractive’ values of the exponent can be noted. Deviations from these ‘attractive’ values
could be related to anisotropy and to some type of intermittency (see below). Therefore,
a classification of the probability distributions observed in the experiments and numerical
simulations seems to be useful at this stage.

2. Model

If we consider a statistical assembly of branches, then the lengthl(t), which a given branch
may choose from a broad distribution, is a random function of the time of the process,t .
Moreover, the mean (on the assembly) value〈l(t)〉 can be a decreasing function of time due
to the branches’ creation and death processes. Let us consider an effective Langevin equation
describing the propagation of the tip of a crack branch

me
d2l

dt2
= F − Ff
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whereme is some constant (the effective mass of the tip),F is the force term depending onl
andt , andFf is a dissipative term depending on dl/dt . Different expressions are suggested for
the dissipative term. The simplest expression,Ff = c dl/dt , is related to the effective friction
(see, for instance, [9–11]). For large friction constantsc we may neglect the second derivative
with respect to time (the inertial term) and obtain the approximation

c
dl

dt
= F(l, t).

A short correlated fluctuating forceF(l, t) may be represented as a space-modulated white
noise

F(l, t) = A(l)η(t)
whereη(t) is white noise. If the large-scale cutoffL � lm (wherelm is microscale of the
branches), then one can expect that in the intervalL� l � lm the scale invariance takes place
and, consequently, the amplitude scales asA(l) ∼ ln. Then, finally, in the scaling interval,

dl

dt
' η(t)ln (1)

where

〈η(t)η(t ′)〉 = 2σ 2δ(t − t ′) (2)

andσ is some constant. Thus, the effective rate of the branch length growth is represented
as nonlinear parametric Kubo noise. Different values of the parameter of nonlinearity
(n = 1, 2, 3) characterize different topology of the manifolds (point-like, front-like, and
volume-like) where the nucleation of a crack preferably occurs.

For n = 1, using substitutiony = ln l, (in the Stratonovich approach), equation (1) can
be transformed into the simplest diffusion equation

dy

dt
= η(t). (3)

The initial condition for probability distributionP(l, t)

P (l, 0) = δ(l − l0)
is transformed into initial condition

P(y, 0) = δ(y − y(l0))
due to the relationships

P(y, t) =
∣∣∣∣ dl

dy

∣∣∣∣P(l, t)
and

δ(y(l)− y(l0)) = 1

| dydl |
δ(l − l0).

Therefore we obtain from (3) the log-normal distribution

P(l) = 1

(4πσ 2t)1/2
l−1 exp

[
− (ln l/ l0)

2

4σ 2t

]
(4)

(cf [12] for an another derivation of log-normal and power-law asymptotics and their application
to fragmentation).

Forn > 1, substitution

y = 1

(1− n) l
1−n (5)
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again transforms equation (1) into (3) and we obtain the corresponding probability distribution
in the form

P(l) = 1

(4πσ 2t)1/2
l−n exp

[
− (l

1−n − l1−n0 )2

4σ 2(1− n)2t

]
. (6)

It should be noted that this distribution is close to a modified Weibull distribution [13]. For

(l1−n − l1−n0 )2

4σ 2(1− n)2t � 1 (7)

we obtain from (6) the power-law distribution

P(l) ∼ l−n. (8)

One may also expect significant deviation from the asymptotic Gaussian distribution whent

is not large, i.e. when there is only a finite number of branching, which is bound to occur in
real experiments.

In the numerical simulations and experiments the probability distributions ofmassof
fragments are usually calculated. For the approximately isotropic situation (in some interval
of scales) we can use the relation

m ∼ ld (9)

whered is the space dimension. Then we obtain from (6)

P(m) ∼ m−β exp[−a(m(1−n)/d −m(1−n)/d0 )2] (10)

where

β = d + n− 1

d
(11)

anda is some constant. Thus we have the following classification scheme:

n = 1 : P(m) is log-normal (12)

n = 2 : β = d + 1

d
(13)

n = 3 : β = d + 2

d
. (14)

The situation withn = 1 (i.e. log-normal fragment mass distribution) can be associated with
fragmentation produced by several main cracks sprouting numerous daughter branches.

The situation withn = 2 (i.e. a power-law fragments mass distribution) can be associated
with planar (in 2D space) and cylindrical (in 3D space) wavefront propagation. In this situation
we obtain from (13)

β = 3
2 (in 2D) and β = 4

3 (in 3D). (15)

And finally, the situation withn = 3 can be associated with impact fragmentation with
a volume-like nucleation manifold (such as, for instance, takes place in collisions of solids).
For this situation we obtain from (14)

β = 2 (in 2D) and β = 5
3 (in 3D). (16)
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Figure 1. Mass distribution of fragments at different values of impact energy after 2D solid disc
collision (data taken from numerical simulation [8]). The dashed curve indicates agreement with
calculation using (10).

3. Comparison with data of experiments and numerical simulations

Observations of the log-normal distribution in experiments and numerical simulations of
fracture and fragmentation processes have already been discussed in the introduction. Let us
now discuss observations of the power-law distributions. In a recent numerical simulation [6]
a fractured object was represented by a set of mass points connected by Hooken springs with
threshold dynamics. In this numerical simulation fragmentation processes were studied for
different conditions. In particular, for 2D fragmentation by impulsive load from one side of
a square crystal (this situation corresponds to plane wavefront propagation) the author of [6]
obtained a value ofβ ' 3

2, and for 3D fragmentation initiated by sudden expansion of the
cylindrical region at the centre of a cubic crystal he obtained a value ofβ ' 4

3. These results
are in good agreement with (15) (n = 2).

Let us discuss the third situation:n = 3. The value ofβ = 5
3 (16) is very well known from

numerous 3D experiments and numerical simulations (see, for instance, [3–6] and references
therein), while a recent numerical simulation on 2D solid disc collision in 2D space [7,8] gives
β ' 2 (cf (16)).

In figure 1 we show data taken from [8] for different values of the impact energy. The
dashed curve is drawn in this figure for comparison with (10) (n = 3 andd = 2). In computer
simulations there are always two cutoffs for the fragment masses, a lower one due to the
discretization and an upper one due to finite system size. This gives rise to the hump on the
left side of the simulated curves. One can see in figure 1 that the calculation using (10) (the
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dashed curve) gives a value of the probability density maximum smaller than those given by
computer simulation. Small (within 10%) deviations ofβ from 2 observed in [7,8] for different
values of the impact energy seem to be rather systematic and, therefore, we suppose that these
deviations are related to some intermittency phenomenon as it takes place in turbulence. To
take this phenomenon into account, equation (1) can be replaced by

dl

dt
= η(t)ln(l/L)δ (17)

whereδ is an intermittency exponent depending on the impact energy andL is a large-scale
cutoff.

This approach suggests that the most relevant thing for describing the fragmentation
process resulting in a power-law size distribution on fragment masses is the geometry of
the elastic wavefront where the crack nucleation occurs. In the literature, however, it has
been shown that symmetry of the shock wave with respect to the geometry of the object being
fragmented also plays an important role (see, e.g., [4]). This is the reason why the exponent of
the power law depends on the aspect ratio in the case of two-dimensional objects [4]. Extending
the present model to take into account this phenomenon is an interesting problem for future
investigation.
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